2021

MATHEMATICS — **HONOURS**

Paper: DSE-A-1

(Advanced Algebra)

Full Marks: 65

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

[Notations have usual meanings]

Group - A

(Marks: 20)

1.	Answer <i>all</i> questions.	In 6	each	question	one	mark	is	reserved	for	selecting	the	correct	option	and
	one mark is reserved f	or j	ustific	cation.									(1+1))×10

 miswei <i>uu</i> questions. n	cach question	one mark	13 Teserved	101	sciccing	the correct	option a	111
one mark is reserved for	justification.						(1+1)×	1(

- (a) Let G be a group of order 22. Then which of the following statements is true?
 - (i) G is an abelian group.
 - (ii) G is a simple group.
 - (iii) G is not a simple group.
 - (iv) G is a cyclic group.

(b) Let G be a finite group that has only two conjugacy classes. Then which of the following is true?

(i)
$$|G| = 2$$

(ii)
$$|G| = 4$$

(iii)
$$|G| = 6$$

(iv)
$$|G| = 8$$

(c) Which of the following can be a class equation of a group?

(i)
$$10 = 1+1+1+2+5$$

(ii)
$$4 = 1+1+2$$

(iii)
$$8 = 1+1+3+3$$

(iv)
$$6 = 1+2+3$$

(d) Let p, q be prime numbers. Then which of the following is true?

- (i) Any group of order pq is commutative. (ii) Any group of order pq is simple.
- (iii) Any group of order p^2 is commutative. (iv) Any group of order p^2 is simple.

(e) The units of $\mathbb{Z}_6[x]$ are

(i) [1] and [4]

(ii) [1] and [5]

(iii) [2] and [5]

(iv) [3] and [5].

	Q has prime element but does not have irreducible element.						
	Q has neither any irreducible element nor any prime element.						
(i)	$f(x) \in \mathbb{Z}[x]$ be a polynomial of degree ≥ 2 . Which of the following statements is true?						
	If $f(x)$ is irreducible in $\mathbb{Z}[x]$, then it is irreducible in $\mathbb{Q}[x]$.						
(ii) If $f(x)$ is irreducible in $\mathbb{Q}[x]$, then it is irreducible in $\mathbb{Z}[x]$.							
	If $f(x)$ is irreducible in $\mathbb{Z}[x]$, then for all primes p , the reduction $\overline{f(x)}$ of $f(x)$ modulo p is irreducible in $\mathbb{Z}_p[x]$.						
	If $f(x)$ is irreducible in $\mathbb{Z}[x]$, then it is irreducible in $\mathbb{R}[x]$.						
(j)	ch one of the following is not a principal ideal domain?						
	$\mathbb{Q}[x]$ (ii) $\mathbb{Z}[x]$ (iii) $\mathbb{Z}_{5}[x]$ (iv) $\mathbb{Z}_{11}[x]$						
	Group – B						
	(Marks : 15)						
2. Ans	any three questions:						
(a)	Let K be a Sylow p -subgroup of a finite group G and N be a normal subgroup of G containing K . If K is normal in N , prove that K is normal in $G(p)$ is a prime number).						
	Let G be a group and S be a G -set. For any $x \in S$, let G_x denote the stabilizer of x . Prove that $G_{bx} = bG_x$ b^{-1} for all $b \in G$ and $x \in S$.						
(b)	Prove that no group of order p^2q is simple, where p and q are two distinct prime numbers.						
	Show that every group of order 99 has a normal subgroup of order 9. 3+2						
(c)	Prove that any two Sylow p -subgroups of a finite group are conjugate (where p is a prime number).						
	Let G be a finite group and H be a Sylow p -subgroup of G . Prove that H is a unique Sylow p -subgroup of G if and only if H is a normal subgroup of G .						
(d)	We that a commutative group G is a simple group if and only if G is isomorphic to \mathbb{Z}_p for some the number p .						
(e)	n be a positive integer and H be a subgroup of S _n of index 2. Prove that $H = A_n$.						

(2)

(h) Which of the following statements is true for the field $\mathbb Q$ of all rational numbers?

(iii) 2-i

(iii) \mathbb{Z}_4

(iv) -2 - i.

(iv) \mathbb{Z}_{11}

(ii) -2 + i

(ii) $\mathbb{Z} \times \mathbb{Q}$

(ii) Q has irreducible element but does not have prime element.

(i) Q has both irreducible element and prime element.

V(5th Sm.)-Mathematics-H/DSE-A-1/CBCS

(g) Identify the regular ring.

(i) 2 + i

(i) $\mathbb{Z} \times \mathbb{Z}$

(f) g.c.d. of 3 + i and -5 + 10i in $\mathbb{Z}[i]$ is

3+2

Group - C

(Marks: 30)

3. Answer any six questions:

- (a) (i) Let R be a Euclidean domain with Euclidean valuation δ and $a, b \in R$. If a and b are associates in R, then prove that $\delta(a) = \delta(b)$.
 - (ii) Let R be a Euclidean domain with Euclidean valuation δ and a, $b \in R$. If a|b and $\delta(a) = \delta(b)$, then show that a and b are associates in R.
- (b) (i) Show that $1+\sqrt{-5}$ is irreducible in the ring $\mathbb{Z}\left[\sqrt{-5}\right]$.
 - (ii) Show that 2 is not prime in the ring $\mathbb{Z}\left[\sqrt{5}\right]$. 3+2
- (c) (i) Prove that the polynomial $x^6 + x^3 + 1$ is irreducible over \mathbb{Q} .
 - (ii) Find the quotient field of the integral domain $\mathbb{Z}[i]$.
- (d) Prove that every principal ideal domain is a unique factorization domain. Is the converse true? Justify your answer.
- (e) Let $M_2(\mathbb{R})$ denote the set of all 2×2 matrices over \mathbb{R} . Show that the ring $M_2(\mathbb{R})$ with respect to usual addition and multiplication of matrices is a regular ring.
- (f) (i) Prove that the Polynomial ring $\mathbb{Z}_{g}[x]$ contains infinitely many unit elements.
 - (ii) Find a monic associate of $3x^5 4x^2 + 1$ in the ring $\mathbb{Z}_5[x]$.
- (g) (i) Find $gcd(x^4 + 3x^3 + 2x + 4, x^2 1)$ in $\mathbb{Z}_5[x]$.
 - (ii) Show that $x^3 + a$ is reducible in $\mathbb{Z}_3[x]$ for each $a \in \mathbb{Z}_3$.
- (h) Prove that in a commutative regular ring with unity, every prime ideal is maximal.
- (i) Prove that any ring can be embedded in a ring with unity.
- (j) (i) Prove that in a polynomial ring over a unique factorization domain, product of two primitive polynomials is again primitive.
 - (ii) In the polynomial ring $\mathbb{Z}[x]$, prove that the polynomial $3x^5 + 10x^4 25x^3 + 15x^2 + 20x + 35$ is irreducible.
